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1. INTRODUCTION

Predictive source encoding with distortion is considered, for an analog source, in the presence of an I,
outlier model. In particular, a stationary Gaussian source is assumed, and observation data that are a i}.
mixture of source data and outlier data. The objective then is to design a sequence of predictive source
encoders which attain satisfactory mean difference-squared distortion in both the presence and the =Y
absence of outlier data, subject to an output entropy constraint. As compared to the optimal at the -~
Gaussian source sequence of predictive encoders, the tradeoff is increased mean difference-squared
distortion and differential output entropy at the nominal Gaussian source, at the gain of good mean

distortion performance in the presence of outliers, (for parametric source encoding studies, see [1]).
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II. PRELIMINARIES

Let [po, X,R] be a discrete-time, stationary and zcro mean real source, where R denotes the real line,

where X is the name of the source, and where i, is its measure. Let X;, i=1,2,..., denote random variables

generated by the source, let x;, i=1,2..., denote rcalizations of those variables, and let X1 f[xi.....xj]T

and xi i [Xis....x;]T, for j 2i. Let R™ denote n one-sided multiples of the real line. Let the measure , be

known, and let us then call [p,, X,R] the nominal source.

We now consider the outlier model. Then, if [)1,Y,R] denotes the obscrvation process, if Y; denotes
the i-th random variable generated by this process with y; denoting its realization, and if Y! and y! denote

vectors as in the above paragraph, we have:

Y, =(1-V)X; +VZ, , i=1,2,... §))]

; where X, is the i-th random variable gencrated by the nominal source, where (Z,} is a sequence of

!

¥
o

random variables whose measure is unknown, and where the variables {V,} are i.1.d. and binary, with:

P(V,=0)=1-€ , P(V;=1)=¢ ()

R

P
h
o

for some £ such that 0<e<1. The sequence {V,} determines the contamination law, and the scquence (Z,)

7
o

XA

correcsponds to the contaminating process, which is not nccessarily stationary. If € =0, then the

observation process is identical to the nominal source [p,,X,R].

We will assume that the nominal source and the scquence {Z;} are both absolutely continuous. We
then denote by f7 (yT'), the m-dimensional density function induced by the nominal source at the vector
point y'. We dcnote by f(yT) the m-dimensional density function of the random vector YT at the
vector point y', where Y; is as in (1) and V, is as in (2). Let us define the following class of m-

dimcnsional density funcitons:

FM={fm: M =0-)"fF +[1-(1-e)" |h™ | )
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where h™ is any m—dimensional density function}
0
It can be easily seen then that ff'eFy. That is, FT' is an enlargement of the class of m-dimensional o)
densities that are generated by the outlier model in (1) and (2). An altemnative form of the class F{ is as : ';
‘f
follows:; .
"]
Py
x \
FE={":GyT-0-8)3@(T) 20 ; ¥y['eR" !
0
[Tyt =1) “)
Rw
it
; where ‘
Q
A m . ‘
d_11-e)" : 0<8<1 S
%
Let C¢ denote the class of observation processes gencrated by the outlier model in (1) and (2), and g‘
let us signify a process [f,Y,R] by its measure p. Then, peCe, means that the process (i, Y,R] is ”
4
contained in class C¢, and clearly 1,eC,, where [, is the nominal source {p,,X,R]. {
A
We consider predictive source coding with distortion for the nominal source p,, when the »
obscrvation process 1 belongs to the class C¢. In particular, for every given infinitc observation sequence '-
>
Y1, we wish to design a sequence (v, y= }m»1 Of generally stochastic operations, such that Vin,ye maps the
datum Xp,,; of the nominal source p,. Let us denote by {vp, }m21. the sequence of the above operations ’ '
".(
when the infinite observation sequence y{ varies in R™. Let us denote by p(y_} the process induced by :‘{
{Vm}m21 when the observation scquences are gencrated by the process p, where peCe. Then, we are :*
Ry
looking for sequences {vy, }m21, Which satisfy the following properties: @
W
%
(@) Forcevery pin G, the entropy H(uy_)) of the process H{v.) is bounded from above by a given finite }}
N
number. N %
\‘ B
. , L ]
(b) There exists some constant D < E, {X7}, such that for every pin G, the difference-squared mean
'l
distortion induced by the sequence (Vi Jms1 is bounded from above by D. That is, if for given :
f
o’
3 J
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» HECe, Zys1 denotes the (k+1)-th random element from the process K(v,}, then, K
Ep,, {(Xirt = Zes1)?} SD 5 ¥k, VpeCe ©) .
i
" ; where X, is generated by the nominal source [t,.
b
(c) The sequence {Vp)ms1 induces entropy and difference-squared mean distortion continuities at the ':
nominal source W,. That is, given n > 0, where exists y> 0, such that if i is a process y-close to u, ;:
) \
in an appropriate measure, then ¥
k Ly
3
IH(ko,(v,)) ~ Hltiy, ! <1 (7) A
1By, {Kest = Zeon)?} = By, (it = Wie)?} 1 <11 5 ¥k ® v
-
; where in (8), X4 is generated by W, Zy4 is generated by (y_), and Wy, is generated by py_;. ,-:
I’ s
Property (c) corresponds to qualitative robusmess, see ({2],[3].[4],[5]), whcre the appropriate e
measure of closencss between the processes 1, and [t is the Prohorov distance with an empirical Prohorov

metric, (see [4],[5]). If property (c) is satisfied, then the sequence {Vy, }mz1 is called gualitatively robust

at y, From the results in [4] and [6], we conclude that {vp, }m21 is qualitatively robust at p, within the

class of stationary processes H, if it satisfies the following sufficient continuity conditions, where I,

1
denotes Prohorov distance with metric ¥, (x,y) i Ix—y!, and where y,(x’l. y';) il -1 3 Ixi=yil.

i-1
(A) Pointwise continuity. That is, given finite m, given n>0, given xT', there exists 8 > o, such that

YT YmXT.yT) < 3 implies Ty, (Vi xp,Vin,yp) <M

(B) Asymptotic continuity  at p,. Thatis, given §{> 0,7 > 0, there exist integers n, and /, some 8> 0,
and for each n > n, some A"eR™ with j1,(A™) > 1-1, such that for cach x"€A" and y" such that

inf {o: # [imy(x*1, yiH-hys o Snec) < 8, itis implied that TTy (v s, Vg ) < G

We point out that if for cach given x" and cach n, the operation v, (» is deterministic, then the

Prohorov distance Ty, (Vp xe,Vyye) 1educes 10 vy o = Ve b
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From now on, we will assume that the nominal source is Gaussian, zero mean, and stationary, with
given spectral density. In section III, we will outline the paramectric version of our approach, when the
obscrvation process is known and predictive source encoding is sought. In scction IV, we will design
predictive encoding operations for finite dimensionalities of the obscrvation scquences. In the same
scction, we will also study the performance of those operations, both at the nominal source and in the
presence of contaminating processes. In section V, we will consider extensions of the operations found in
section IV, for asymptotically long obscrvation sequences. In the same scction, we will also study

performance issues of those extensions. In scction VI, we draw some conclusions.
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IlII. THE PARAMETRIC APPROACH

In this section, we consider the case where the nominal and the observation processes are both

known and mutually dependent, and predictive encoding is sought, for entropy reduction. We will denote

® the nominal and the observation processes, H, and W, respectively, and we will assume that they are
absolutely continuous. We will then denote by f7(yT) the m-dimensional density function of the

obscrvation process, at the vector point yT'. We will denote by £, ,(xIyT') the conditional density at the

point x of the datum Xp,; from the nominal process p,. given the observation vector yT* from the

obscrvation process . We will also adopt the difference-squared distortion criterion.

Given the above, let us initially assume that no entropy reduction is sought. Then, as well known,
the sequence {vp)}me1 Of mappings that minimize mean distortion are deterministic and given by

conditional expectations. That is, given m and yT', we have

Venyee = Epp (Xoney 1¥7 )} = l{ X S 1y P)axd my (v ©)

and for Z,, denoting the (k+1)-th element from the process py_j, the induced by the operations in (9)

h mean distortion is:

em(Ho) 2 By ((Kint = Zie)?) = By (XE ) = [£00/PIm2 ,(yP)dyT (10)
Rm

Let us now assume that in upper bound, log M, on the entropy of the process (v, is given. Then,

we design a scquence {Vy, Jma1 of stochastic mappings, as follows:

Step 1

We sclect a sct (A;, 1<i<M } of intervals on the real line with Aj\A; =0 ¥i#j, (U A, =R, and

I<isM

jfpn(x)dx =M, where £, (x) is the onc-dimensional density of the process i, at the point X.
AI

" '---------vvq--v-"- ‘.'."\’,.'-.'."..}._b
L P S S AL AR A N R T ¢ <. »



Step 2

Using the set {A;, iSisM} of Step 1, we design the sequence {Vy, }ms1 Of stochastic mappings so
that, given m and yT', the mapping Vp, y,. is a stochastic channel, mapping the sequence yT onto a sct

{vi, 1<i<M} of scalar real values; it maps yT onto v;, with probability:

Piin™ 2 [ fuxlyPdx
A,

(1
The set {v; ; 1<i<M} is selected to minimize the mean difference-squared distortion. That is,
A m m M m 2 m
Do n({vih) = j d}'lfp.()'l )Y P (YT I(X“Vi) Fugp (X1yTHdx =
R® i=1 R
= {a,,lirsliiM} D w3 D (12)
Then, it is easily found that,
-1
vi= [ J dy?‘fm?')pi,u,_p(ya"% [y PA TP (Y TIM (v (13)
R® R=
M -1
Dm,p,,p({vi D= E. {Xr2n+l -3 I: J‘dy'{‘fp(yrln)l)i,p,,p(yrln% ’
i=l | R®
{ | dy'x“fp(y?‘)pi,p,_p(y?‘)mp,,.(y?‘% 2
Rm
2Cn(lo 1) ¥m (14)

; where ¢, (1, 1) s as in (10) and where m, ,(yT") is the conditional expectation in (9). Duc to

(14), we conclude that the stochastic mappings in Step 2 induce higher mean difference-squared
distortion than that induced by the conditional expectations in (9), for the gain of reduced output entropy.

As the number M increases to asymptotically large valuces, the mean distortion Din (v D) approaches

¢m (Mo, 1), and the output entropy increases to the entropy of the nominal process.
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Let the nominal process M, be zero mean and stationary Gaussian with varance per datum r3, and

let the obscrvation process |t be .. Let then p,zn denote the mean-squared error induced by the optimal at
I, mean-squarcd one-step predictor, when the size of the obscrvation vector is m. Let the interval 4; in
(11) be (a;,b;), where b;>a;. Then, we easily find that the cxpressions in (13) and (14) take the following
form, where ¢(x) and ®(x) denote respectively the density function and the distribution of the zero mean

and unit variance Gaussian random variable, at the point x:

S

N M b; [ i ! b, q :
Doy n (Vi) = 1 = 132(th — p&)? zH-} - a—” H—} —m{"—w (16)

_ -1.2
vi= {ro"ro pn]

1=1

L R R A B RN
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®
® IV. FINITE DIMENSIONALITY OBSERVATION SEQUENCES
In this scction, we consider the outlier model, as exhibited by the observation process in (1) and (2),
and we assume that the nominal process is stationary zero mcan Guassian. We then wish to design
@ predictive encoding operations vy, for 1<m</, where / is some given finite integer. We want the designed
operations to satisfy properties (a), (b), and (c) in section II. For given finite /, we adopt a saddle-point
game theoretic approach, based on the parametric scheme in scection IIl. We first assume that the
[ ] processes in the class Cg in (1) and (2) arc all absolutely continuous, and we denote by f3'(yT) the m-
dimensional density function of the nominal Gaussian process g, at the vector point yT'. Then, given /,
we consider an enlargement, F L, of the class of [-dimensional densities generated by the model in (1) and
< (2), as that in (4). In particular, we consider /-dimensional densities, f , of the observation process, such
that feF§, where:
) Fi={f /T - (1-8)/(yT) 20 ; Wy eR™,
[fomay? =1} (17
Rl
® 88 1-(1-¢) : 05 (18)
Let an upper bound, log M, on the output entropy be given. Then, we wish to design predictive
S encoding operations which satisfy this bound for every process in class F§, and which induce mean

difference-squared distortion that is upper bounded by a given bound, for cvery feF§. Our approach

evolves from the parametric scheme in section 11, and goes as follows:

Step 1

Sclect a set {A;. 1<isM]} of intervals on the real line with A, =0:%=2, U A =R, and
1<ieM

jﬁ,(x)dx= M, where fu, 18 the one-dimensional density of the Gaussian nominal process |, at the
A

point x.

1@ w3338 40
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Step 2

Using the sct (A, i<i<M} in Step 1, and given a process p whose density function belongs to the

class F§, we form the set {p; ., 1<iSM} of probabilitics as follows,

Given yP inR™ : piuy™) & [ fuu(xlyTidx, 1sisM (19)
A
Let Ny denote the set of sets (a; ; 1<isM} of M real numbers. We then consider the following class, D,
of mappings v; = v;(t, {a,}), that is generated by varying pin F§ and {a;} in Ny:
Given |t in F§ and (a;) in Ny, given observation sequence yT, v;y» maps the scquence yT' onto the
value a;, with probability p;,(yT"), as in (19). Given {a;} in Ny, given W; and W, in F, let
Dy(uy,M2,(2;}) denote the mean difference-squared distortion induced by the operation v;(3,{a;}) in D,

at the observation process ;. Then,

M
Di(pi,b2, (&) = | dyTh, OF) T Pis, (YT [ (x—2002fy, , (X 1yTdx (0)
R™ i=1 R

We arc then searching for a triple (1) *,12*, {v;}), such that pt; *eF§, o *eF5, (v;)eNy, and:

VU EFS s Dy Ma*, (Vi) S Dy 2 (vi ) < Dy * e *, ()  ¥{a;)eNy 21
Then, we sclect the vi* = v (o *, {v; }) encoding scheme for the class F§.

Remark If an encoding scheme vi* = v, (U2*, {v;}) in D cxists, such that it satisfies (21), then it is
guaranteed that the maximum mean difference-squared distortion that it induces in F§ is

sup D;(i, 12 *, {v;}), subject to the existence of the latter supremum. By construction, the mapping v;*
ek

also attains maximum cntropy in F} that is bounded from above by log M.

Let f,(x!yT) denote the conditional density of the Gaussian nominal process for the datum N, at
the point x, given the past scquence yT' from the same process. Let £,(y!) denote the m-dimensional
density of the Gaussian nominal process at the vector point y7', and let Q, be the m-dimensional

autocovariance matrix of the process. Let us also then define:
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mo(yT) 2 [ folx1yT)dx
R

Pai(y™) 2 [ folx1yT)dx )
A
We then express a theorem whose proof is in the Appendix.

Theorem 1

Given the class F% in (17), and for every 8:0<8< 1, the game in (21) has a solution
Uk w*, (vi). If fj*(y’,), j=1,2 denotes the /-dimensional density function of the pocess p;*, j=1,2 at

the vector point y}, then this solution is as follows:

DA A =A*) = (-8 maxAT (DT ¥1)P)

: where, A; : I_!‘f"‘(y’l)dyll =1 23)
and for,
aity}) A M {1-min(1 A (/) TQE Y )1 +
+ Poi(y)min(L A {(y)TQ yi 712) (24)
vi = M(1-9) [dy} £,(yDmo(yDay}) 25)
Rl
Then,

VHEF} 5 Dy(pz* (vi)) € Dy(ia* ia*, (vi}) 2 Dprax =

M 2
=E, (X} -(1-9)M 3 | [ dyf folyDmo(yaiy} (26)
Rl

i=1

The encoding scheme v, * is as follows:

Given an obscrvation scquence yf, v;* thaps it onto v; with probability ah.
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Given / and M, an encoding scheme v; consists of a set {a;, 1<isM} of values, and for every
observation scquence y) a set (pi(yh). 1<i<M} of probabilities, such that y) is mapped onto q; with
probability p;(y}). Given [, given some encoding scheme v, given an absolutcly continuous obscrvation
process with arbitrary dimensionality densitics, f, let Dy(f,v;) denote the mcan difference-squared
distortion induced when v, is deployed, f is the density of the observation process, and a datum from the
nominal Gaussian source is predictively encoded. Let v§ denote the optimal at the Gaussian observation
process encoding scheme. That is, given an observation sequence y4, v) maps y} onto u;, with

probability poi(yll), where, given set {A;, i<iEM]}, p,;(v}) is as in (22), and where for mo(y'l) as in 22):

-1
U = { jfo(x)d%| Jay £ Dmo(yPai(y)) @7)
A R’

Let the common sct {A4;, 1<isM]} be used by both the scheme v{ and the scheme v, * in Theorem 1,

and let this sct be such that ffo(x)dx =M"; Vi. Let Jo denote the arbitrary dimensionality density of the
A

nominal Gaussian source, and let m,(y}) and p,(y}) be as in (22) and q;(y}) be as in (24). Then, by

substitution, we easily obtain:

i=1

M 2
Di(fo,¥)) =E, (X*}-M 3, [ f dy’Lfo(ybmo(y'l)poi(y’l% (28)
Rl

M 2
Dy(fo, vi*) =Ey, (X?} - (1-5M 3, [ [ dyt f,,(y’l)mo(y’l)qi(y’li :

i=1 | R
-[z-a—s)M | dyﬁfdyﬁ)q.(yﬂ% (29)
Rl

Let I denote the I-dimensional vector whose elements are all cqual to one. Let z denote some scalar
real number, and let us then consider a density £, such that, fy}) = (1-8)f,(y}) + £8(zI)), where { given
and such that 0<{<1, where £, is the density of the Gaussian nominal source, and where 8(-) denotes delta
function. Given /, given an encoding scheme v, let Dy(f,,&,z,v;) denote the mean difference-squared

distortion induccd by v;, when the observation density is such that fiy}) = (1-0)f,(v}) + {8(z1)) and a

-----------

W

Pt | WX NI

B




T R A A N R

datum from the Gaussian nominal source is predictively encoded. Then, for Di(f,, vf) as in (28) and for

D(f,. vi*) as in (29), we obtain by substitution:

Dy, 5. 2v9) = Dy(fo D) AVilf L2, v9) =

M 2
=(MY Idyif‘,(y‘l)mo(y‘l)poi(y’l% [1+Mpoa<z1’} (30)
i=t | R

Di(fo, §z.v*) = Dilfo,v®) S Vilho, Guzov®) =

M
={(1-OM XU [ dylfo(yDmeyDaiyDIP2 = 1-9M [dylfo(yDaiyh) + M(1-8)qiel)]  (31)
i=1 R R

The functions in (30) and (31) represent changes in mean difference-squared distortion, when the
observation process shifts from the one corresponding to the nominal source to a mixed process, which
with probability (1-§) is the nominal source and which generates deterministic z-amplitude data with

.probability €. The rates of those changes at { =0 are the Influence Functions, I;(f,,z,v?) and 1,(f,,z,v/*),

of respectively the encoding schemes vi and v;*, at the nominal source W, and the amplitude valuc z.

That is,

A dvl(fovcvzvv?)

L(fo.z,v7) _ —a lg=0=

M 2
=M [ ] dy’Lfo(y’x)mo(y’n)poa(y’x% [1+ Mpei(z1)] (32)
i=l [ R

A 8Vi(fo.8.zv*)

L(fozov®) 2 e | {=0=

M 2
=(1-5M ¥, {J dy} fo(y’nmo(y’,)qi(y’l% 2-(1-9M [dyifo(yDay) + MU=-O)qelY  (33)
i=1 [ R R’

Given /, given an encoding scheme vy, given the nominal density £, given z and C, Ict us consider
the mcan dilference-squared distortion Dy(f,,L,z,v;). Let us allow the valuc 121 to go to infinity, and lct

us then find the maximum value { for which D;(f,.{, oo, v,)sEpo[Xz}. This latter value is the
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Breakdown Point of the cncoding scheme vy, at J,. It represents the highest frequency of extreme
amplitude, (o), deterministic outlier values that the encoding scheme can tolerate, before it becomes
uscless; that is, before the observation sequences provide no information about the source data. We now

express a lemma, whose proof is in the Appendix.

Lemma 1l

Given M, consider a set (A;, I1<isM] of intervals on the real line with A;~A;=0;

¥i#j, U A =R, and _[fo(x)dx=M", where f,(x) is the onec-dimensional density of the Gaussian
1<isM A

nominal source. Let in addition A} = (—ee, —a@) and Ay =(a, «) for a > 0. Let v be the optimal at the
Gaussian process encoding scheme, and let v;* be as in Theorem 1. Then, given /, the breakdown points

€7 and {;* of the schemes v{ and v,*, respectively, are given by the following expressions.

M -1
J? = {1+MP}, [ 3 P%J ! (34)
i=1

M

M -1
L =(1+ (1—8){ Q?,J [ > QA2-(1-8)M [dy'f, (v} )qi(y‘nﬂ ) 35)
1 i=1 R!

; where, for m, (y}) and p,;(y}) as in (22) and g;(v}) as in (24),

Poi 2 [ dyifulyhma(ypaity}) (36)
Rl

Qi 2 [ dyifulyhme(yDa,vh) 37)
RI

Remarks  For finite dimensionalitics of the obscrvation sequence, the encoding operation v* clearly
satisfies the pointwisc continuity property (A) in section II; thus, it is qualitatively robust. As exhibited
by cxpression (24) in Theorem 1, for {('y’,)TQ,"yll J' relatively small, the operalion v, * maps scquences
y’, onto the sct of values in (25), using the optimal at the Gaussian nominal source conditional

probabilitics. As {(y)" Q7' y} }'? increases. however, the operation v* uses a mixture of such
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r source.

Asymptotic Performance

find:
Define, the scalars A; and p; as follows:
Ar: Ay U (x Ly Dmo(yh) = Axfo(x)
p? =Ep (X1 = me(XD1?)
Then,
Jim Dy(fo,vf) = (1-ADE,, {X?)
Jim (Di(fo,§,2.vD) = Difo, VD)) = CAT{[14p7 1GE,, (X7} + pymi(a1))
Define,
q(xyh) 2 (=min(L 4 (DT Y5 D)0 +
+min(1. A {(yD)T 07" yi 17 2)(x1yh)

Then,

tJ

Jim Difov*) = By (X7} -201-8) faxteof [yl hmayhaeeyd
Voo R R

| IS S
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mapping probabilitics, and asymptotically, (for (v} Y or! y} — ), it maps the sequences y4, using the

unconditional nominal density function £, (x). Thus, it disregards extreme obscrvation valucs, offcring

protection to data outliers, at the expense of reduced mean difference-squared performance at the nominal

Let us assume that the number of valucs onto which observation scquences yi arc mapped is
asymptotically large. That is, M—ee. We are then interested in the performance of the encoding schemes

v and v;*, for given finite /. From expressions (28), (29), (30), (31), (32), and (33), and taking limits, we

(38)

(39)

(40

41




+(1-5)? l{dx};z(x)lkjl dy} folyDatx.y DIl J dytfolyDmo(yDatx.yDI? 2
2 (1-ADE,, (X?) (42)
Jim (Dy(fo.8.2.9%) = Dilfon vi*)) =
= £2(1-9) l{deE'(x) [ i dylfo(yDmo(yhacx y )P
+ - §(1-8y i dxf2 ()l l{ldyifo(y’l)q(x,y’m[ llldyiﬂ,(y‘l me(y A,y

+(1-8y? ‘{ dxfS200qex,2) J dylfo(yDme(yac.y)I? @3)

From the above expressions, and noting that ‘lim q(x.zl‘ ) =f,(x), we also find, denoting by @, the
PARE )

Ix! autocovariance matrix of the nominal Gaussian source:

_ Define,
b
o SayTor't )R a4)
Then,
Nl‘i_r?“h(fo.l,\’?)=Alzl[l+p?lEp,{X2}+Zzpzm§(l')} (45)
Jfim 1,(fo,2,v%) =
i = (1-8) {2H(1-8)[1-min(1, Ae 1zt )1} [ dxfs' I [ dyifetyDimo(yDacx.yDI?
R R

+(1-8)?min(1, Ac 12171 [ A (x 1210 [ dylfo(yDmo(ytdat.yi)r?
R R

‘ ~(1-8)? .{ dxfo> ()l i dyfalyDaxyDll ,{ dyifa(yDmofyDatx.yDI? a6)

fim (7 =0 47

Moo

dim gr= (14 (1=9)] [ s o0l [ aylfuyimo i acey DI
Rindad R R

--------



-1
1 [ axl [ dy Uy Dme(yDax, y D2/ (0 - (1-8)52x) [ dylfsyDaxyD] 171 @8)
R R/ R

Let us define,

max Img(y4)I
L= ity =1 O “9)

Then, we can express the following lemma, whose proof is in the Appendix.

Lemma 2

The limit influence function in (46), and the limit brecakdown point in (48), that the encoding

operation v,* induces, arc bounded as below:

Jim L(fy.2,vi*) € (1-8)(3-8)aAim? —
= (1-8)? [axf2(01 [ dylfolyDlacx yDI [dylfatyhmo(yDax.yDI?
R R

e 5 50)

l%f’g < fim {* < (148 m} {(1+8)AM] m] + (1-8) [ dxfo! (O Jdy Loy Dmo(yDax.y D)™ (51)
R R

Moo

Thus, asymptotically, (M—eo), the optimal at the nominal source encoding operation has
breakdown point zero, and quadratic influence function. On the other hand, the operation v;* has then
uniformly bounded influence function and strictly positive breakdown point. Remarks  As compared to
the optimal at the nominal source opcration v{, the operation vi* is asymptotically, (M—eo), supcrior in
terms of breakdown point and influence function performances. This is at the cxpense of mean
difference-squared distortion and differential entropy performances, at the nominal Gaussian source.
Indecd, as it can be casily seen, asymptotically, (M—eo), the process induced by v;* and the Gaussian

mcasure Y, has higher differential entropy than the process induced by vy and p,. In addition,
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»
fim Dy(f5,vi*) > lim D;(f,,v7), and from (26) we concludc:
. Moo Moo
lim Dy(fo,vi*) < E, (X*) = (1-8)? [dxf5! (ol [dy!ifolyDIme(yhacx.yDI®
\ M—-)°° R Rl
k MfeF§ (52)

Given [, let Hy, (vy) denote the differential entropy induced asymptotically, (M—ee), by the encoding
scheme v; at the observation process M. Let Hy r,(v)) denote the differential entropy induced
asymptotically, (M—<o) by v;, when the observation scquence is generated by the nominal source p,,

with probability (1-£), and it consists of deterministic, amplitude-z data, with probability L. Let p; be as

% in (38), and let us define,

32, (X2 . of & ph?

P : g(yh) & min(, 4 (DT Qi'y1) ) (53)

Then, we can cxpress the following lemma, whose proof is in the Appendix.

+ Lemma 3

Let 1 be some absolutely continuous obscrvation process. Given /, let fy}) denote the density

function of this process, at the vector point y}. For,

B, 2271 [ dyl iy 1-gyIeyh=2+0T+07 2 +pi2(1+0Hm(y))]
Rl

+ ~{Incy) ‘! dyifty)(1-g(y})] (54)

the diffcrential entropics Hy (v, *) and Hy, ¢.2(v/*) arc boundcd from above as follows:

Hy(v*) S 2711+ In2rp7 | + By (vi*) (55)

Hy, 0 (V%) € 27 [14m2rp7 | + (1=0)B,,_ (v*) +
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©
+ {27 g@)1-g(z-2+0t + 67 +pi*(1+aD)Pmi(1)]
®
~{[1-g@z1)]Ing, (56)
For 1z1 5, we find a tighter bound on H%_c'z(vl*), as follows:
. * *
lim Hy g0 v = (1-0H, (v*) = cjdxfo<x)1nfo<x> <
z
< (1-027! [1+1n21p?) + {27! (1+In2mrd ] + (1-)By,_ (v, *)
® =271 + In2npF] + (1-4)B,,, (v/*) - {Ino; (57)
We note that the differential entropy H, (v?) induced asymptotically, (M—ee), at the nominal source
< by the optimal at the nominal predictive operation v is bounded as follows:
Hy, (vf) =271 +1n2npf] (58)
-3 Also,
Hp,0 (VD) =27 [1 +In2np}] 5 ¥,z (59)
ﬁ ® We point out that when the nominal Gaussian source is k-order Markov, then we sclect /=k, and we
deploy the predictive operation v, * in Theorem 1, for /=k.
L
'S
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V. ASYMPTOTICALLY LONG OBSERVATION SEQUENCES -
o
In this section, we consider the same outlier model and the same Guassian source, as in section IV, “
but we include asymptotically long observation sequences. In the presence of such scquences, the precise :
P modelling of the observation processes that evolve from the outlier model in (1) and (2) is an impossible '
task. On the other hand, enlargements of the class of observation proccsses, as thosc in (17), misrcpresent
the actual class when long observation sequences are considered. In fact, when the length | of the "4
® observation sequences tends to infinity, the class F é in (17) represents the casc where the observation
process is the nominal source, with probability (1-8), and it is some other process, with probability &; that N
is, no data mixing is then included, and the outlier model is not then a member of the class. For non "4
L)
< Markovian Gaussian nominal source, and asymptotically long obscrvation sequences, we thus cxtend the 9
predictive operations of section IV adhocly, but in an intuitively satisfactory fashion. N
Given [ finite, given k, given the observation sequence y¥, and for Q; denoting the /-dimensional X
@ autocovariance matrix of the nominal Gaussian source, Ict us definc, X
A 1 2 .
s 2 (D] oy ¢ osisien (©0) ;
® For A; as in (23) in Theorem 1, let us also define, ;
. A i :
i oY ) min, 1, — o yf 8
iyl
. N
YRR L DY ki ki N
zr(yr) ={z21 ) Zgonys (i (61) .
Let us now consider the following two mapping densitics, that map the observation scquence yh! .
onto the real line, for predictive encoding of the datum X, from thc nominal source: ;
11 K
k-1 m A k-1 [ [ A ! R
q’(x.y}’)‘}_ > Y Hmin/ 1, - ’ o1 T T=ming 1, —_[k-;—! b .
T m- (n,,l’;Jim)J U | (YT ) -mel l_ L l Jty )j‘, n
Yoy, o, 1<4<m) — £, ()] + £,(x) (62)
20 ]
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k-1 A
@*xyt) 2| 1k S min| 1, ——| £,(x)
a;,(y1

=0

k,)} fotxtz¥(y¥y) (63)

k-1
+k™ ¥ min| 1,
=0 [ 3N

The mapping density in (62) is an intuitively pleasing extension of the operation v;* in Theorem 1,
but very complex, both in terms of implementation and in terms of analysis. In addition, it docs not
provide a clear indication as to the mapping values, when their number M is finite. The mapping density
in (63) is much simpler. It also has intuitively pleasing characteristics as well: For A;—eo, it converges 10

the optimal at the nominal source mapping. It also disrcgards extreme data valucs, using the

k-1
unconditional density f,(x) in its mapping, when k™' ¥ min{ 1,
i=0

ki

— 0. In addition. g*(x.y}")
3,1yl

provides easy cxtensions of the mapping values in (25), when M is finite. In conclusion, we proposc the

following predictive encoding scheme for non Markovian Gaussian nominal sources, and arbitrarily long
obscrvation sequences:

Encoding Scheme

Gven M, sclect a set {A;, I<isSM] of intervals on the real line with AA; =0 ®izj,

W Ai=R,and [f,(x)dx=M", .
1<i<M A

Select some finite natural number /, and given & : 0<8<1, find the positive constant A;, as in (23).
Then, given k, given an obscrvation sequence y¥/, map y¥ onto vi* with probability q*,(y}".
where for p,i(yT) as in (22), for z§/(y¥') as in (61), and for a; ,(y¥') as in (60 the valuos

{v;*, 1<i<M} and the probabilitics g, *(yX') arc as follows:

*( iy -1 - k-1 . X[
g*yiH)=M"]1-k7" ¥ minj 1, =]+
3= aJ'[()'f

kﬂ

S M ]
+K7 Y min| 1, Po /1 (v
Jl‘)l

=
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vi*=M(1-8) [dy¥ £, )mo(yia () (65,
Rll

Remarks Given /[, given length k! of observation sequences, we will denote the above encoding
scheme v, *. We will denote by {v;*, k=1} the sequence of encoders cvolving trom v, , =, for
varying k values. We note that the scheme utilizes [-size disjoint blocks of obscrved data. where /
may be considered as a design parameter. In addition, it bounds disjoint {-size blocks ot data in
Poi (25 (y§H), for all i. This is in contrast to the scheme in scction IV, and is necded for

asymptotic, (k—ee), qualitative robustness.

We now express a lemma, whose proof is in the Appendix.

Lemmad

Let {b;,} be the one step prediction coefficients of the nominal Gaussian source, when m-

M
size obscrvation scquences are given. Let {b,,} be such that, ¥ b, | < ¢c* <eo: ¥m. Then, the
=1
sequence {v; ¥, k>1} of predictive encoders is qualitatively robust at the nominal Gaussian

source. That is, it satisfics both continuity conditions (A) and (B) in section 11

Let Dy (fo. vix™*) denote the mean difference-squarcd distortion induced by the encoding
scheme v, *, at the nominal Gaussian source. Let Dy (f,.8,2,v, *) denote the mean difference-

squared distortion induced by v, *, when the [-dimensional observation density is such that,
/{yﬁil”] =(1—C)f(,[y§{f{”} +£8(+1"), and lct then §; * be the breakdewn point of v *. Given

M. we then casily find by substitution, and as in section [V

A

vl
Do v = B (X = =M 31 [y Aodhmaadhg 1ok
=1 | RY

"o Y
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{
2-(1-5M | dy'f’fo(y‘f’)qi*(y‘f’% | (66)
Rkl

D1 (6,802, vin®) = D1 (fou Vi ¥) = N

M 2
={1-9M 3 [ ] dy’lf(,(y’])mo(y’l)qi*(y’,% [2-(1-9M [ dylfoyDai*(yh) T3
R' Rl

i=1

+M(1-8)q;*(zI')) 67

-1

M M
Ca*= {1+(1—5){Z (Qoi*)z] [z@oi*)z[z—(l—&m JaylfelyDaraydl 1 (68) -
i=1 R \
Y

=1

; where,

2

7 P,
-

.""I “» WY
%

Qa2 [ ayihtrhmyatoh) (69)

LA
A

' ey

5 v

! ' Lct us define, for {aj,,(y'f')} as in (60) and z¥'(yX") as in (61),

k-1
q*("vy'l"Vi[l-k" Zmin[l' n H o) o

=0 aj(y5)

_1k_l .
+k™ Y min |1,

)», i
P ——T)} fxizfy (70) N

3;1(¥1

Then, if I [fo,z,v,.k’ﬂ denotes the influence function of the operation v, 4 *, and in parallcl X

to the expressions (42), (43), and (48) in section IV, we find the following asymptotic, (M—3o0),

Y
. >
expressions: "

l'l'
LA

TAANF
.(‘:"‘.'.‘U

2
Jim Dy (fo,vix*) =By, (X?) = 2(1-9) | deE'(x)[ | d)’?’fo(yﬁ’)mo()’5’)q*(x.y?’}
Mo R RY

LS

3
-~

+(1-8) | deZZ(x){ | dy?’fo(y'i")q*(x'y?’% { | d.VVfu()"?’)mo(ﬁ’)q*(x.yﬁ’i (71
R Ru Rll

ALY
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2
Jim 1y (o zviy *) = 2(1-8) IdeZ‘(X){ [ dyifo(y’l)mow’uq*(x,y’,%
Mo R R’
2
—(1—8)2Ide;2(X)[ [dyiftyh )q*(x.y‘l% [Idyﬁfocy’l)m(,(y’l)q*(x.y‘l%
R R R/
2
+ (1—8)2Ide32(X)q*(x.Zl')[ [dylfolyDmo(yt )q*(x.y’l% (12)
R R

Jim %= {1+ (1-8>[ jdxf:'(x{ Jdyifotvh )m‘,(y’,)q*(x.y‘l% ? :
Vl—yoo R R’

-1

2
[Idx[jdyﬁfow'l)mo(y’l)q*(x,y‘l% [21‘3‘(X)—(l—Slf“oz(X)Idy’nfo(y’x)q*(x.y’nﬂ o)
R R’ R

Remarks The asymptotic expressions in (72) and (73) correspond to [-size observation blocks
and asymptotically many mapping values {v;*}. For /-order Markov nominal Gaussian sourccs,
those expressions represent the asymptotic, (M—eo), influence function and brcakdown point
induced by the encoding scheme {v,,*} at the nominal source, for any k. Comparing
expressions (71), (72), and (73), with expressions (42), (43), and (48), in section IV, we can draw
the following conclusions:

The encoding scheme in Theorem 1 induces smaller mean difference-squared distortion at the
nominal source, than the scheme v, * does. However, the breakdown point of the former is
generally smaller than the breakdown point of the latter. The influence function of v, * is

bounded, and it converges to its bound slower than the scheme in Theorem 1 does.

If Hy, (v;,1*) denotes the differential entropy induced by the scheme vy * at the nominal source, and for

Bp(vl*)

3:

e 08 W L R e e L

as in (54), g(y’,) as in (53), and p, as in (38), we find via methods as those in the proot of Lemima

Huﬂ(v,.l*)S?_"'[]Hnan,:} +B, (v +
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L +27 [aylf D8 DIgHIM3E 61 - mayD] (74)
RI
From the results in Lemma 3, in conjunction with (74), we conclude:

% The scheme v, 1 * induces lower differential entropy at the nominal

source, than the scheme in Theorem 1 does.

Limiting Behavior

The sequence {v;,*,k=1} of encoders in this section was designed cspecially for non-Markovian
nominal Gaussian sources, and asympotically long observation sequences. Thus, the study of its

performance characteristics for k—eo is important. We will perform such studics, for the case where the

[
mapping values {v;*} are asymptotically many; that is, for M—<e, We first cxpress a thcorem, whose
proof is in the Appendix.

P ‘ Theorem 2

The influence function \{lim Ik (for2, v *) is uniformly bounded from above, for cvery z and cvery

V] —po0

k. The breakdown point rj[im G« * is uniformly bounded from below by a strictly positive constant, for
-0

every k.

In view of Theorem 2, we remind the rcader that the optimal at the nominal source predictive
encoding opcration induces asymptotic, (M—ee), breakdown point cqual to zero, and unbounded

quadratic asymptotic, (M—ee), influence function, for every dimensionality™f the obscrvation sequence.

As k incrcases, the asymptotic, (M—eo), mean difference-squared distortion induced by the sequence

.5

.
)

{vix*} of encoders at the nominal source, decreascs monotonically, but remains uniformly higher than

'

rr s

that induced by the optimal at the nominal sequence of predictive encoders. Given k, the former is given
by cxpression (71), where the latter is given by expression (39) in section V. Lot H,, (vii*) denote the

differential entropy induced by the encoding scheme vy * at the nominal source. Then, we express a



lemma, whose proof is in the Appendix. Forp, as in (38) and 1, and o, as in (53), we first defing,

k-1 A
Guyth iK'y min[l ! ] (75)

=0 23, (y¥)

Lemma s

For g(y}) as in (53), and for,

D)2 5 [ ahI60I] 1 - ot [o + ot +
RU
+ 152 (140D m(2¥ (v¥) —7}
- (’n%] {1 -] dy’u‘o(yﬂ)g(y{% (76)
Rl

The differential entropy Hy, (v *) is bounded as follows:

Hy (Vi) € —;—[1 + 1n2np£,] + DV ¥) amn
r If {bin} are the one step prediction coefficients of the nominal Gaussian source when m-size

M
observation sequences are given, and if ¥ Iby,! <o, Vm, then there exists ¢i* < oo, such that,
i=1

tmo ¥ (y¥)) 1 < A;c*. Then, we find a looser upper bound on H,,_(v;,*), as follows:

1

Hy (v < -i-[l + In2npﬁa +C(Vik™) (78)

y where

Clvig™*) 2

19—

]
[o;? +0f + 12 (140 DAF (¢ *)? —% [J dylfo(yheyh -
. R

# - dy%’f@(y%’)G%_/(y#’,% - {mck] [ 1-f dylfu(yh )g(y’l% (79)
RIJ

R




Remarks The differential entropy Hy (v *) decreases monotonically with increasing k, and remains 1o

strictly higher than the diffcrential entropy induced by the optimal at the nominal predictive encoder, at e

G
i the nominal source, (given k, the latter equals %[1 + ln21tp§,] ). Inthe { italic 1 im }it, (k-»=0), the bound sl

7

»

in (78) can be as small as the asymptotic mean-squared error, /im A2, of the optimal at the nominal source

n--oo

‘f-l.
o

2
C J

one-step predictor allows. This depends on the spectral characteristics of the nominal Gaussian source.
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V1. CONCLUSIONS

In this paper, we considered predictive encoders with distortion, for entropy reduction. We
considered a stationary and Gaussian nominal source and we designed and analyzed qualitatively robust
predictive encoders, for resistance to data outliers. Our encoders offer protection against outlier values, at

the expense of increased distortion and differential entropy, at the nominal source.
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APPENDIX

Proof of Theorem 1

Let y1; and py be given, and let fy and f; denote their corresponding densitics. Let
fp‘u(x,y’,) denote joint density of the datum Xp,,; from the nominal process, at the point x, and

the random vector Y4 from the observation process at the vector point y4. Then, from class Fj

we conclude:

f,,,,p,<x.y’1)=<1—8)fo<x,y‘1>+8fo<x)[fz<y’.>—(1—8)fo<y@ (A1)
fp.o.p,(x'yll) (l_s)fo(yll)
a1y =———" =1 = ————4 fi(x)+
Hota VU= T D) Hoh | "*
(1-8)f, (y}) .
+ — fo(xly)) A2
LD flxiyi A.2)

- 1 _ !
Pi_z(yln)i .[fm.uq(“)’ll)d)&:M" [1 _a S)fo(YI)} N (-3, (y1) 1
A

poi(y ) A3
ALY f2(y}) 1 (A-3)

Let us define,

-1
b{l-? = (I—S)Udy’m(y‘n )Pi,z()’lli JayVfuyDmotyHp 2 (A4)

Then, we easily find,

M -
D12, (62 =, () - (1-87 3 [ foytaohaoi]

i1=1

-[deifu(y’n mu(y’mp..:(y’l] “<

SDiGy L {a ) L WA ey (AS)
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4 v 1 \J 1 A U u L} i L u

Z[de"fn (y‘n)pa,z(yq B [dy‘n fo(y‘n)mo(ybpa.z_(y’l% "2

-1
2
Z{Zjdy’m (v )Pi.z(yll} Z[ JaylfolyhImo (v )Pi.z(ylli =
Lg rol I 1?2
=Z[Id)'lfo()'l)mo()'l)pi.Z(YIﬂ (A.6)

with equality in (A.6) if f;(y}) = f2(y}) ; ¥ yieR!. From (A.6) and (A.5) we conclude,

i 1.2, 1662)] < Dithz bz, (682)) =

2 I Le ool ! N E
=Ey {X°}H1-9)°M Z[J'dYLfo(YI)mo()'l)pi.Z(YI% (A.7)
i=1
; where,
b = 1-8M [ dylfo(yDmo(y)pi 2y (A.8)

M , 72
Now,  supDi(h2.hz, (b*?)) corresponds to inf ME[J’dy‘Lfo(y‘l)mo(y’l)p._z(y‘@ -

Application of calculus of variation gives that f* in (23) attains the latter infimum. The proof of

the theorem is now complete.

Proof of Lemma 1

) . oty — a1 . . L) 1 5 i=1M
From (24), we have zl_l.lll..q'(Zl)—M" ¥i. Also, zl_l’Tﬂp,(Ll)—{o . otherwise’

Substituting the above in (30) and (3l), in conjunction with (28) and (29), we find that

Di(fo. 8 te vP) S Ey (X2} ¥E < LF and Dy(f,, Gotoev*) S Ey (XP): ¥ < L%,

Proof of Lemma 2

We casily conclude, for q(x,y}) as in (41):

qQUx.yh) <fo(x) + fu(x1yh)

30
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o 2651 (%) - (1-8)52 () fdy o (yDacx.yh) > 2815 (%) (A.9)
Also,

[yt yDme(yha.yh) <
» < fo®)dylfo(y 1) 1 mo(yD) Imin(1, A, {(y)TQry4 )12)

+ fay Loy Imo(y)) Imin(L A ((y)TQI 4 ) ) (x 1y

<2hmyf(X) (A.10)
nd Applying (A.9) to (48), we find,
. 28
VP (A1D
. Applying (A.10) to (48) and (46), we find,

Jim §* < (14+8)4hfmf {(14+8)4A7m} +(1-8) l{dxf;‘(x){ ;{ dyifolyDmo(yd )q(x,y’,% 2 )
(A.12)
Nii_rll,(fo.z,v,*) < (1—8)4}»,2m,2{3—8—(1—8)min(1,A,c,lzl"%
+(1-8)2 4Afm?min(1.A,c 1z17Y)
- (1-9)? l{dxf;zoo[ J dyifo(yh )q(x.y‘l% [ J dy’lfo(y’nmo(y‘l)q(x.y‘l% 2
= (1-8)(3-8)4A} m}?
—(1—5)2£dxj‘;’(x)[l{'dyifo(y’x )q(x.y’l% [J’dy‘Lfo(y’n)mo(y’l)q(x.y'x% 2 (A13)
Proof of Lemma 3
Clearly, for q(x,y}) as in (41), we have,
—H,(v/*) > _[d)'l\f(yll Y dxaex.yDiogaexyd) (A.14)
R R
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; where,

fxatr.yhlogatxyh) = [ 1-minct (b Qr v4142) [0, ogatn 1)
) +min<1,x,.{(y‘l>TQr‘y‘l}“”)J{dxfdxly'l)zogc«x.y‘l) (A.15)
Let us define,
gyh) 2 min(L A ()TQ7 ¥ ) 1) (A.16)
l 3 2E, (X)) (A1)
Then, from (A.15) and the convexity of the logarithmic function, we obtain:

# Cyh) 2 faxatx,y)loga(x.yh) = (1-gyh)1 fdxf,(xlogacx,yh) +
R R

+g(yh) faxfo(x 1 y)logq(x,y}) 2
R

2 [1-g(yh)1? Jdxfo(dlogfo(x) + (1-g(y)g(yh) [dxfo(x)logf, (x 1 yh)
R R

+[1-g(yD1gyh faxfo(x 1y Dlogru(x) + g2(y}) [dxfo(x 1 y1)logho(x Iy})
R R

hIIEA

=-2"11-g(yDIP(1 + log2nrd] - 27! g%(y!)llog2rp? + 1)

AAAEARA

_Nsh:v »

=2 TgyDi-g(yDI {log2nrd + log2np? + pr2(rd + m2(y})] + r52{p? + m2(y)H1)

S

£
S

==2711 + log2npi | + 27 [1—g(y))llogoT -

‘L

=2 layDi—goDii=t + 6f + o7 +pit(1 + oDHmiyD) (A1%)
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; where, log is the natural logarithm /n, and where,

o? 2 ro’p? (A.19)

Substituting (A.18) in (A.14), we find (54). Similarly, we find,
~H,_ ., (v*) 2 (1-0) [dyif, (y}) [dxa(x,y ) logacx.y}) +
R R
+ {[dxq(x,zl)ogq(x,2l') 2 ~(1-4)27'[1 + log2mp?} —
R

~(1=0)By, (vi*) = {27! [1 + log2np}] + {27! [1-g21))logot -

=027 g 1-gI)I[-1 + o7 + 67 + p72(1 + 67)22m2(1I')] (A.20)
Proof of Lemma 4

The mapping q;*(y¥') is clearly pointwise continuous for every finite k and cvery i, since

min{ (l s and p,; (y%") are both pointwise continuous, for every i and j, and cvery finite k.
3 1(y1
Let now k be given, and let then x¥ and y% be two sequences such that

x,[yf,‘::})', xf}:})ﬂ <o, 0<a< 1, fork(1-o) of the k i's. Then,

Lmo(2X (K1) ~ mo@§ (ki) < ac* + Mjoc* = ac*(1 + 1)
and given, x¥/, given £, > 0, there exists o > 0, such that,
# B x> ap) <key  implics,
(2§ (yK)) = poie (XN <&y 5 Wi (A.2D)

Similarly, given x¥', given g€, > 0, there exists 8; > 0 and 83 > 0, such that,

33




F“""“"""

y,[x,qt})’, yJ'I})ﬂ <, implicslmin[l.

A
‘“ -min[l, )»,ovcrcaj_,(y'{’i | <g5 (A22)
a; (x7)

(45 Oz, vy <k and w{afi. v <5

A A
imply, |min] 1, ———lrr] pai(z(x¥)) - min[ [, —— ] PN <2 (A23)
3 (x1") a,(y1)

Given x¥, let now y¥’ be such that:

)

%,

{# = ey, x> o) s ko for some o such that o < min(3;,85)

-.‘:(‘

‘-..

<

b
e

Then,

1)~ g1 <k S i 1, }"lkl —min 1 ll“]l
pord aj (x¥) (")

k-1 A’l l]
+k! Imin| 1, ————{ Poi 29Ky =min| 1, ———— Oi(z"[(y“))l <
JE) { aj_,(x‘{')] P ( 1 ( 1 )) [ aj_,(ylfl)J p 1 1

<2(1-o)ey + 200 (A.24)

From (A.24) we finally conclude that given x¥/, given € > 0, there exists o > 0, such that,

(# : neyf xGHP > af ke implics

1g;*(xK) - g *(y§)1 <€ 5 Vi,
Proof of Theorem 2

Let us dcfine,

M ] . v 4
' qj*(xcy’ld)i 1-min| 1, || fo(x) +min I, —= foxtz2 ¥y (A25) =
ﬂj,l(y] ) 4,10y ) NG
Then, :_:_:-
".;',"_a
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W 5 ¢

o
W
k! ad W 2
gG*xy1)=k7 ¥ qix.y1t) (A.26)
j=0 Py
hl B
A 0
If Dy (fivi*) denotes the mean difference-squared distortion induced by v * at the ':
% density £, then, A
L4
~
i Y= NP -
im Dy (fvie® =k T DP(f v %) (A2D) ~
M—)°° FO 5
;
b ; where, |
LA ¢
¥ ¢
LF
§
DP(fviuc*) & By, (X2} - 2(1—5)Idxf3'(x)[jk.,dY'f' o(y¥'>mo<y'f‘>q*<x,y‘f‘% : o
R ¥
| 4 e
| [ay¥Rythai* eyt [xftx iyt 0!
RY R Y
~
"'
. : 2 oY
P +(1-8) desz(X)[ fﬂ(y'f‘)mo(y'x“q*&.y‘f’% [ [ ay¥iRy¥)a;H(x, y‘,"% (A.28) :
R R¥ R¥ oS
Due to (A.27), we conclude that the influence function induced by v, * is the average of E‘.’
the influence functions induced by the operations {q;*, O<j<k-1}. Also, if ,;;* denotes the ;
breakdown point of the operation g;*, then the breakdown point of v, * is bounded from below :
S
by osmsiknlu,.j*. From (A.28), and due to the boundness of the vector, z¥ (yX), we now conclude \
<k
that there exists some positive constant, d*, such that p;* > d* hﬁim Coa* 5 Vi I (f,2,.q%) " '
—)on
denotes the influence function of the operation g;* at the nominal source, we also conclude that :: x
there exists some finite constant, e*, such that, /;;(f,,z.q;*)<e* Jlim In{e.zvi1*). The
—oe
Theorem easily follows from the above, where Vliim I (fo.2,v 1 *) is given by (72) and \ldim Cia*
V] —po0 Moo
is given by (73).
Proofof Lemma 5
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For g*(x,yY) as in (70), we clearly have,
—Hy, (via®) 2 [ dy¥fo(yED [dxg*(x,y{)ing*(x,y%)
R¥ R

(A29)

For qj*(x,y‘f’) as in (A.25), and due to the convexity of the logarithmic function, we have,

k-1
]dxq*(xy dng*(x,y§) =k T fdxg*(x.y¥)ing*(x,y¥) 2

rO R
Py k-1 k-1
2k? Y 3 [dxg*x.yfhing *(x.yt) (A"0)
=0 i=0 R

Also,

Jaxg*(x,y¥)ing*(x.y¥) = { —mm{l. H [axf,(ong, *(x.yhH
R

q; 1()’1 )

- M ! ki
+min| 1, kl Idxfo(x“l (i)ing*(x.y1) 2
ajl’ yl

A A
> | 1-min| 1, - l-min{l, Jd\f(,(x)lnfu(x)
aj(y1) a; (vt

+ | 1-min| 1, M min| 1 M jdxf (x)inf, (xI/ k’))
aj,(y%h " au%h ° ° Y

+min[l M 1-min| 1 —L Idxf x1z¥ (y¥))inf,(x)
' aj_l()')ld) " au(yth ° : °

: )‘1 M Kl ki ki a1
+min| 1, min| 1, 7 jdxfo(xh,(yl))lnfo(x!/ o). (A31)
a; (v a1 (y1)

Let us define,
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Then, from (A.31), and for ry and p,, as in the proof of Lemma 3, we obtain:

1 L]
Jaxay0y¥hingi eyt 2 = gy 0gi 1) + -G HN1-g1O) Y
N
1 1
—5 (1=8u(y/1)Yin2re — =g/ (yi)in2mply —
1 1 :
[ + m3 @ (¥ Mg ) - — ok + m2EK (i ))g .Y
2piy 2r5
-
1 5 Pt 1 | PR ki K
+ E{_Z — | 5+ 3 mat I NI g Gi)g () (A.33)
Pkt 10 P To
Define, :"'
:
k-1 ‘f
G M2k S g% (A.34)
0 3
From (A.30) and (A.33), we then obtain; :.':
1 1 2 .
Ja*Gy¥)ing eyt 25 6Lyt - 7[ 1—Gk,,(y‘f‘i :
;:
.
1 1 g
- 2 1G] mansg - L 6 ytmanod :

1] _ - A
- 3] o + om0 Gyt 5
-~
1 -
- 3| ot + o] Gt
-
l L]
+ loif + i+ pif (1 + obpmi Y MIGE o) .
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®
1 9
== —[1+n2rp§ ] + [1 - G, ,(y¥)inoy,
2 ,
o
1 _ _ _
- EGk,z(y'.“nl—ok,,(y'f’)no 7 + ol +15°(1 + oy (yKy) - 2 (A.35)
® ;. where,
ou & 15'pu (A.36)
®
Applying (A.35) to (A.29) we obtain the result.
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